In this section we take a brief look at the history of operating system which is almost the same as looking at the history of computers.


First Generation (1945-1955)
  • During second second world war many people were developing automatic calculating machines. These first generation computers filled entire rooms with thousands of vacuum tubes. 
  • They did not have an operating system, they did not even have programming languages and programmers had to physically wire the computer to carry out their intended instructions. The programmers also had to book time on the computer as a programmer had to have dedicated use of the machine. 
Second Generation (1955-1965)
  • Vacuum Tubes provide very unreliable and a programmer, wishing to run his program, could quite easily spend all his/her time searching for an replacing tubes that had blown. 
  • Development of Transistor : Now, instead of programmers booking time on the machine, the computers were under submitted on punched cards that were placed onto a magnetic tape. This tape was given to the operators who ran the job through the computer and delivered the output to the expectant programmer. 
  • Concept of batch-processing (jobs): Instead of submitting one job at a time, many jobs were placed onto a single tape and these were processed one after another by the computer. The ability to do this can be seen as the first real operating system. 


Third Generation (1965-1980)
  • IC (Integrated circuit) as a replacement for transistors : The third generation saw the start of multi programming. This is the computer could give the illusion of running more than one task at a time. 
  • When one job had to wait for I/O request, another program could use the CPU. The concept of multi-programming led to a need for a more complex operating system. 
  • Another feature of third generation machine was that they implemented spooling. This allowed reading of punch cards onto disc as soon as they were brought into the computer room. This eliminated the need to store the jobs stored to disc, thus allowing programs that produced output to tun at the speed of the disc, and not the printer. 
  • Up until these point programmers were used to giving their job to an operator and watching it run. 
  • This concept led to the concept of time sharing. This allowed programmers to access the computer from a terminal and work in an interactive manner. 
  • Obviously, with the advent of multi programming, spooling and time sharing, operating system had to become a lot more complex in order to deal with all these issues. 

Fourth Generation (1980-present): 
  • The late seventies saw the development of Large Scale Integration (LSI). This led directly to the development of the personal computer (PC). 
  • These computers were (originally) designed to be single user, highly interactive and provide graphics capability. One of the requirements for the original PC produced by IBM was an operating system and, Bill Gates supplied MS-DOS on which he made his fortune. 
  • In addition, mainly on non-Intel processors, the UNIX operating system was being used.
  •  Mainly, we can say that Graphical User Interface (GUI) became popular in 4th  generation computers.


Fifth Generation (Sometime in the future): 
  • We can notice that each generation have been influenced by new hardware. The fifth generation of computers may be the first that breaks with this tradition and the advances in software will be as important as advances in hardware. 
  • Able to interact with humans in a way that is natural to us. No longer will we use mice and keyboards but we will be able to talk to computers in the same way that we communicate with each other. 
  • In addition, we will be able to talk in any language and the computer will have the ability to convert to any other language. Computers will also be able to reason in a way that imitates humans. Advances need to be made in AI (Artificial Intelligence). 
  • It is also likely that computers will need to be more powerful. Maybe parallel processing will be required. Maybe a computer based on a non-silicon substance may be needed to fulfill that requirement (as silicon has a theoretical limit as to how fast it can go).